Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access

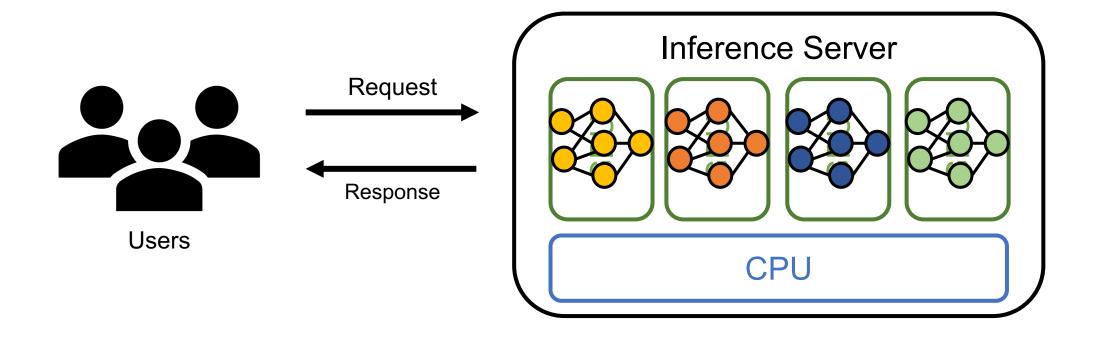
Jinwoo Jeong

Seungsu Baek

Jeongseob Ahn

DL Model Serving Systems

- Important to serve incoming inference requests with low latency
- Existing inference serving systems
 - Keep DL models in GPU memory, enabling requests to be immediately served



Growing Number of DL Models

Number of DL models is growing every year

Inference server provider's concern:

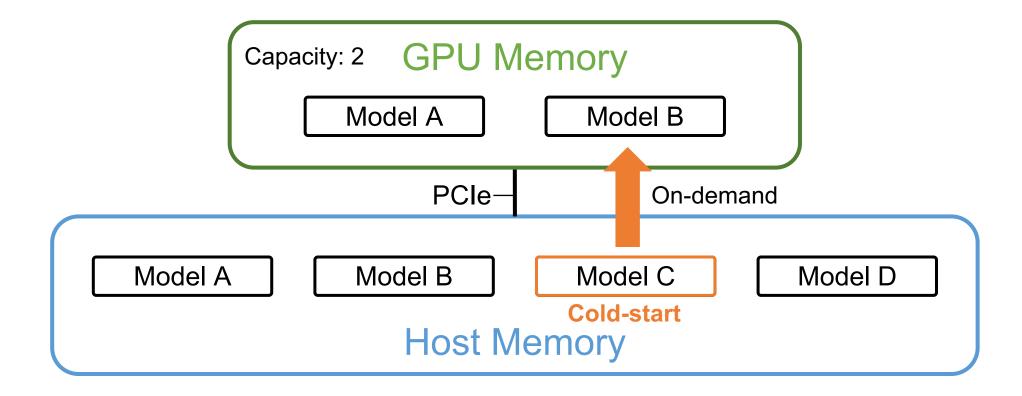
1. Limited GPU memory

2. Increasing the number of servers

3. Increasing the operating cost of servers

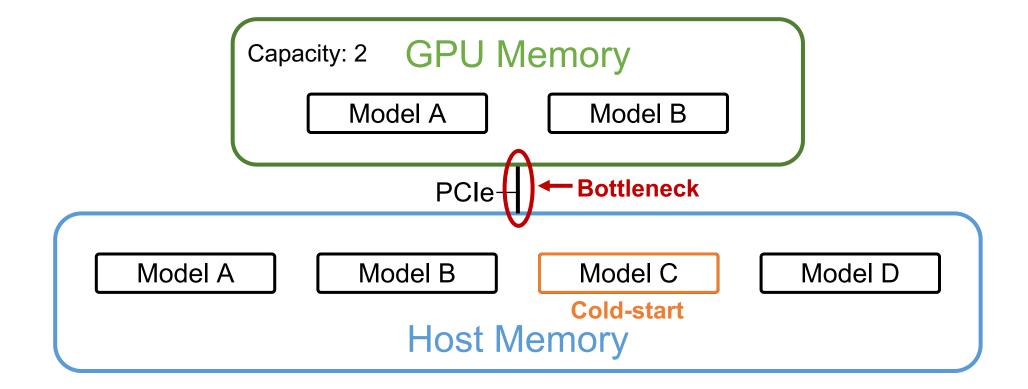
Leveraging Host Memory

- One promising approach to reduce the cost of GPU servers
 - Extend the number of models beyond the GPU memory limit



Cold-Start Problem

- However, such the cold-start affects the quality of user experiences
 - Makes it difficult to serve inference request within the desired SLO



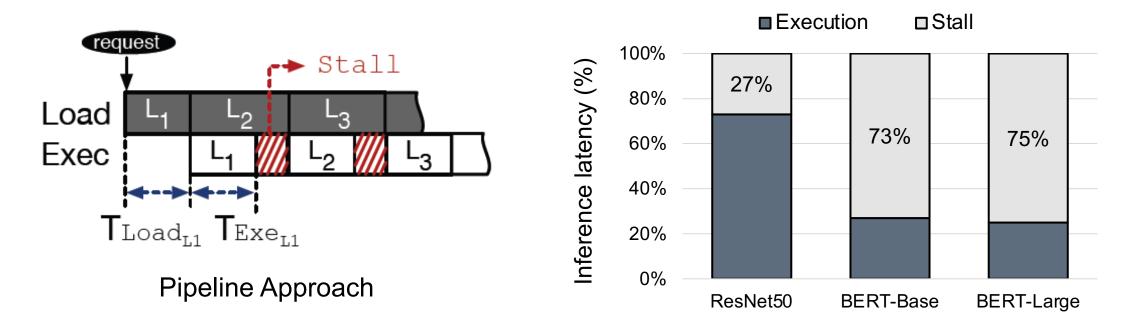
Cold-Start Problem

- However, such the cold-start affects the quality of user experiences
 - Makes it difficult to serve inference request within the desired SLO

The remaining challenge is to minimize the cold-start latency when loading deep learning models into GPU memory **Bottleneck** Model A Model C Model D Model B **Cold-start Host Memory**

Pipelining Approach (Bai et al. OSDI'20)

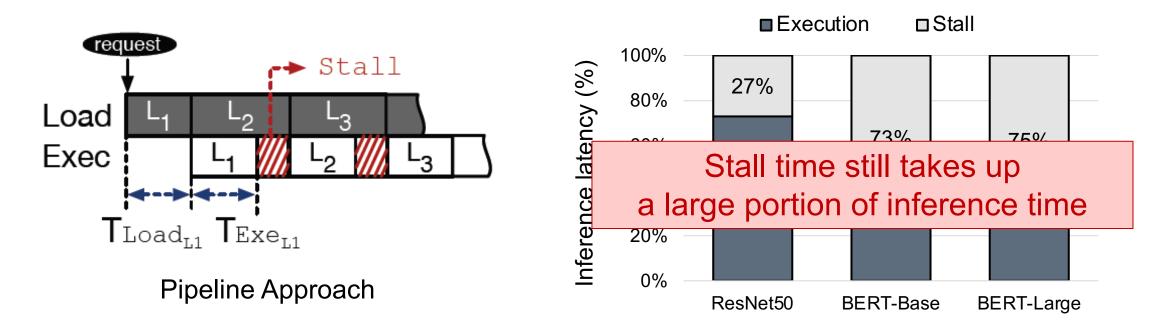
- Pipeline the loading and execution of each layer
- Execute a layer as long as it is prepared in the GPU



Our work focused on reducing the stall time

Pipelining Approach (Bai et al. OSDI'20)

- Pipeline the loading and execution of each layer
- Execute a layer as long as it is prepared in the GPU

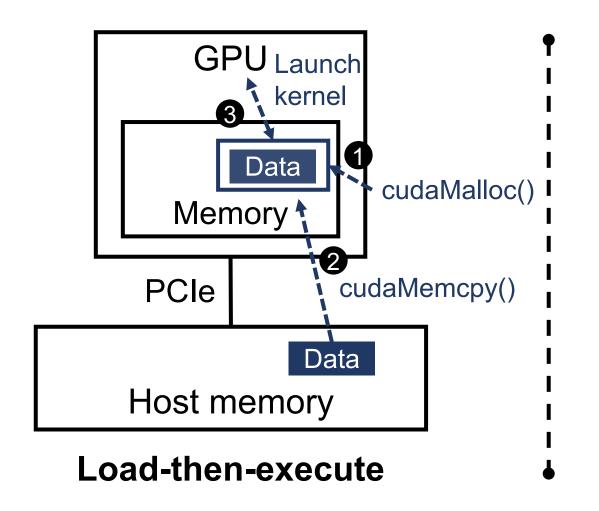


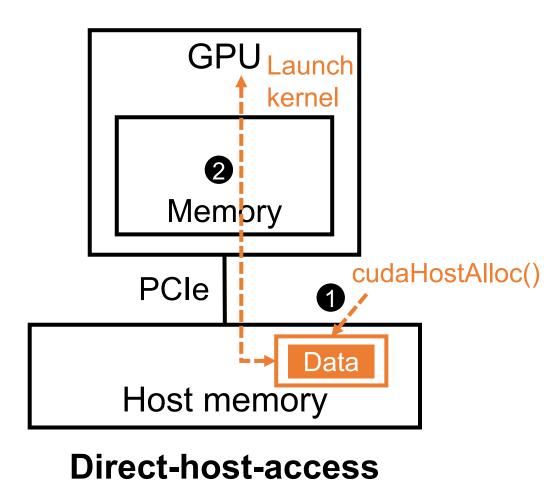
Our work focused on reducing the stall time

Our Approaches

- Reducing the cold-start latency
 - 1. Leveraging direct-host-access
 - Applying direct-host-access to layers that can reduce stall time with direct-host-access
 - 2. Leveraging parallel model transmission
 - Further reduce stall time by using multi-GPUs when loading models
- Incorporating the above two approaches
 - 3. DeepPlan: automatically generating optimal inference execution plans

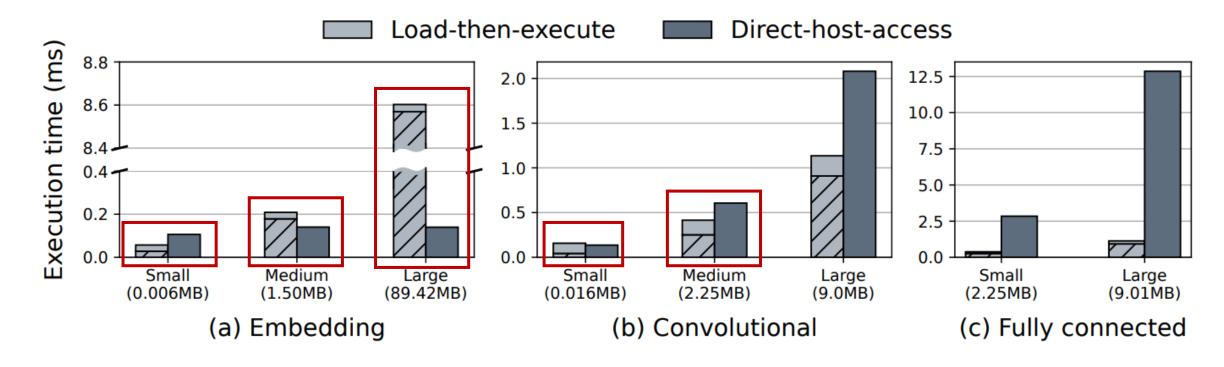
Two Methods for Computing on GPU





Performance Analysis for Direct-Host-Access

We analyzed the performance for layers used in popular DL models



Apply DHA to layers which have performance benefits

Embedding: BERT-Base, Convolution: ResNet50, Fully Connected: BERT-Base

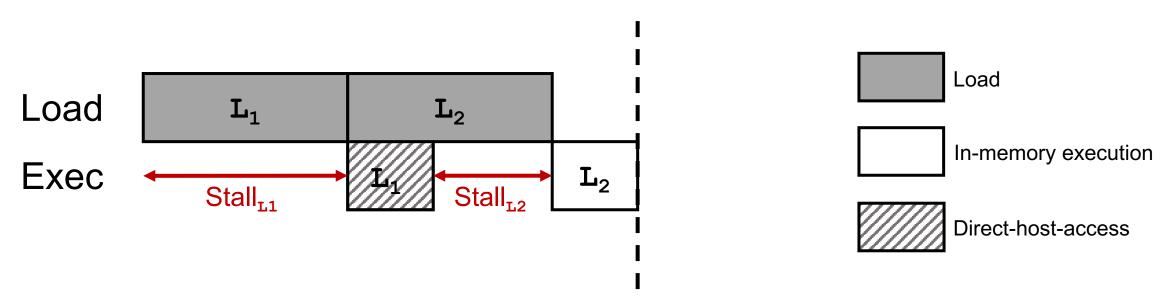
Advantages of Direct-Host-Access

- 1. DHA doesn't need to reserve the GPU memory
 - ⇒ DL model can be served with less memory usage
 - ⇒ Keep more models in GPU memory

- 2. While GPU executes a layer using direct-host-access, it can simultaneously load other layers
 - ⇒ Reduce or even eliminate pipeline stall
 - ⇒ Speed up model execution

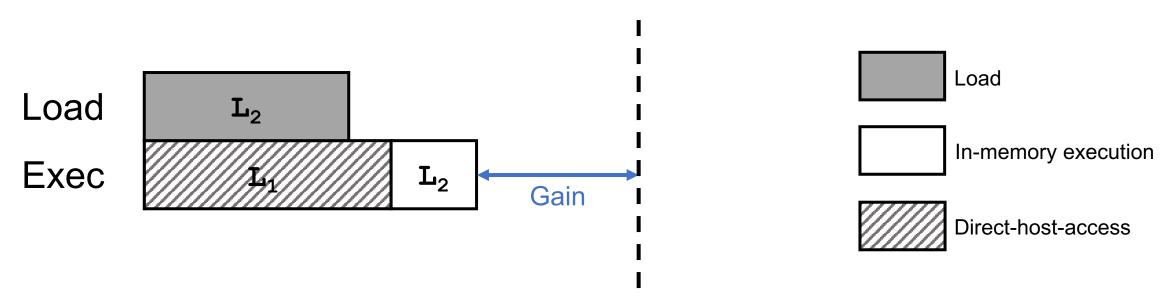
Leveraging Direct-Host-Access

- Acceleration of L₁ execution
 - 1. Replace the L_1 layer with direct-host-access
 - 2. Advance the loading of the L_2 layer and the execution of the L_1 layer
 - 3. The L_2 layer can start earlier than with the simple pipeline approach



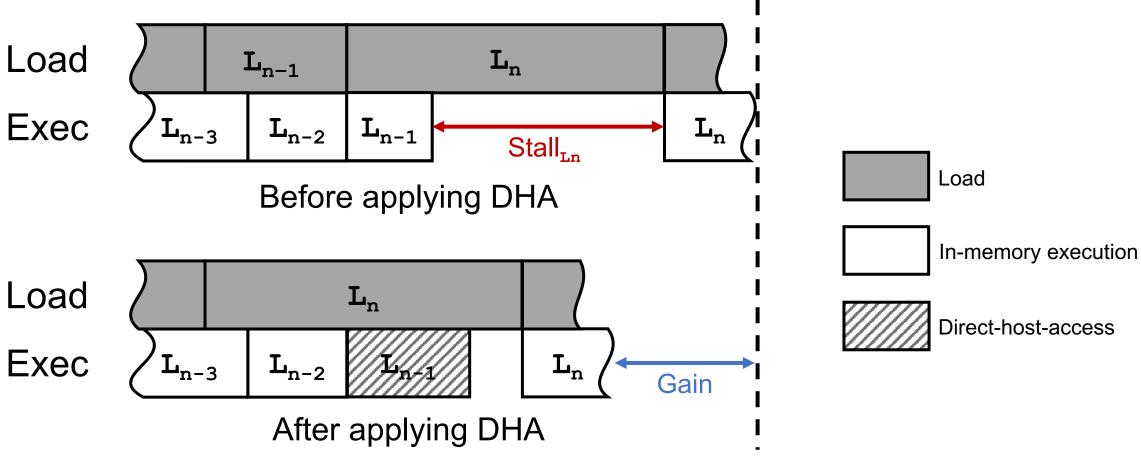
Leveraging Direct-Host-Access

- Acceleration of L₁ execution
 - 1. Replace the L_1 layer with direct-host-access
 - 2. Advance the loading of the L_2 layer and the execution of the L_1 layer
 - 3. The L_2 layer can start earlier than with the simple pipeline approach



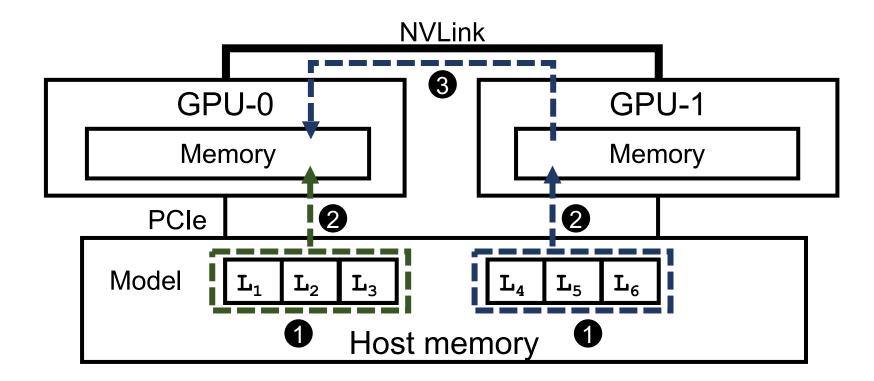
Leveraging Direct-Host-Access

• Reduce stall time of the L_n layer



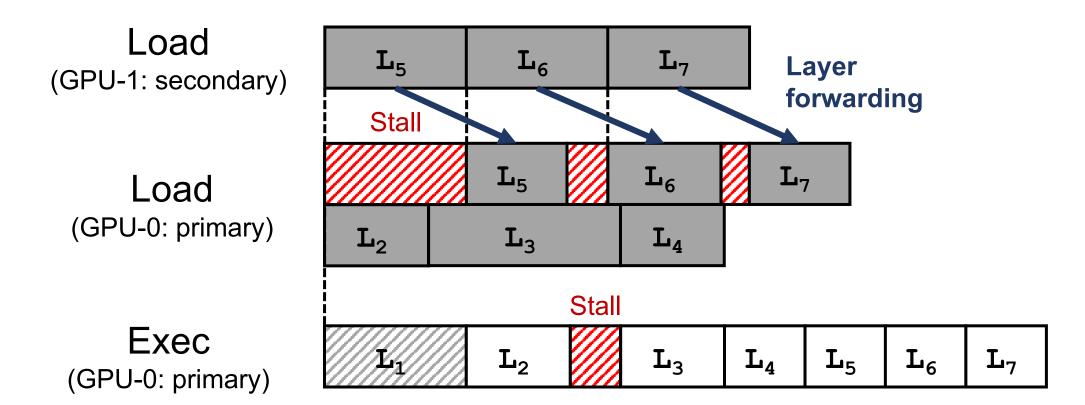
Parallel-Transmission (PT)

- Utilize multi-PCle lanes to load a single DL model
 - 1. Divide the DL model into two partitions
 - 2. Distribute the partitions across two GPUs
 - 3. Merge the partitions into the GPU that has the first partition



Leveraging Parallel-Transmission

 Cooperative parallel-transmission with direct-host-access to accelerate model provisioning



Challenges

- Modern DL models and GPU servers are becoming diverse and complex
 - DL models have too many layers
 - A wide variety of server environments
 - Number of GPUs, GPU type, Interconnect, etc.
- Applying DHA and PT manually to the layers of models is challenging
- An automatic system could be needed to address these challenges

DeepPlan

 Automatically generating an optimal inference execution plan for a given server environment and model



Experimental Setup

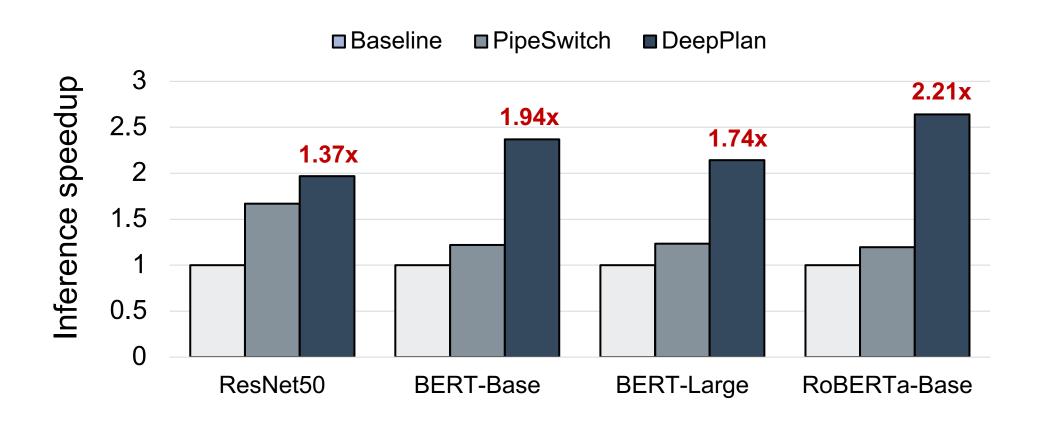
Hardware Setup	Four V100 GPUs with NVLink (AWS p3.8xlarge instances)		
Comparison	Non-pipeline (Baseline), PipeSwitch* (OSDI'20), DeepPlan (Ours)		
Framework	LibTorch v1.9.1 (PyTorch C++)		
Workloads	Vision models	ResNet50, ResNet101	
	NLP models	BERT, RoBERTa	

Source code: https://github.com/csl-ajou/DeepPlan

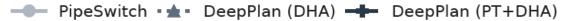
^{*} Z. Bai et al. Pipelined Context Switching for Deep Learning Applications (OSDI'20)

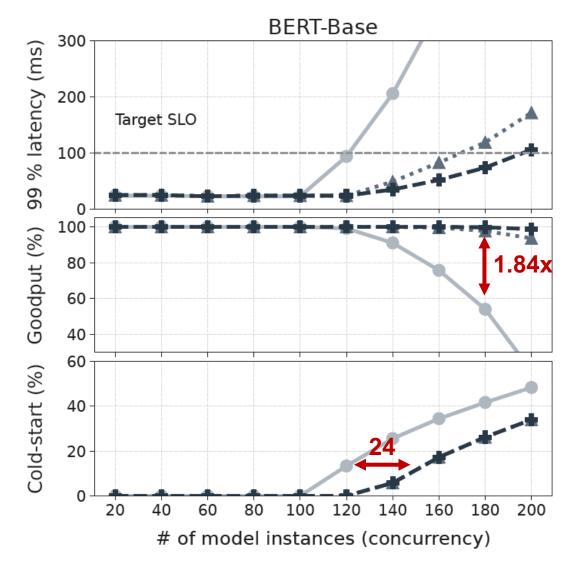
Single Inference with Batch Size 1

DeepPlan outperforms PipeSwitch across all models



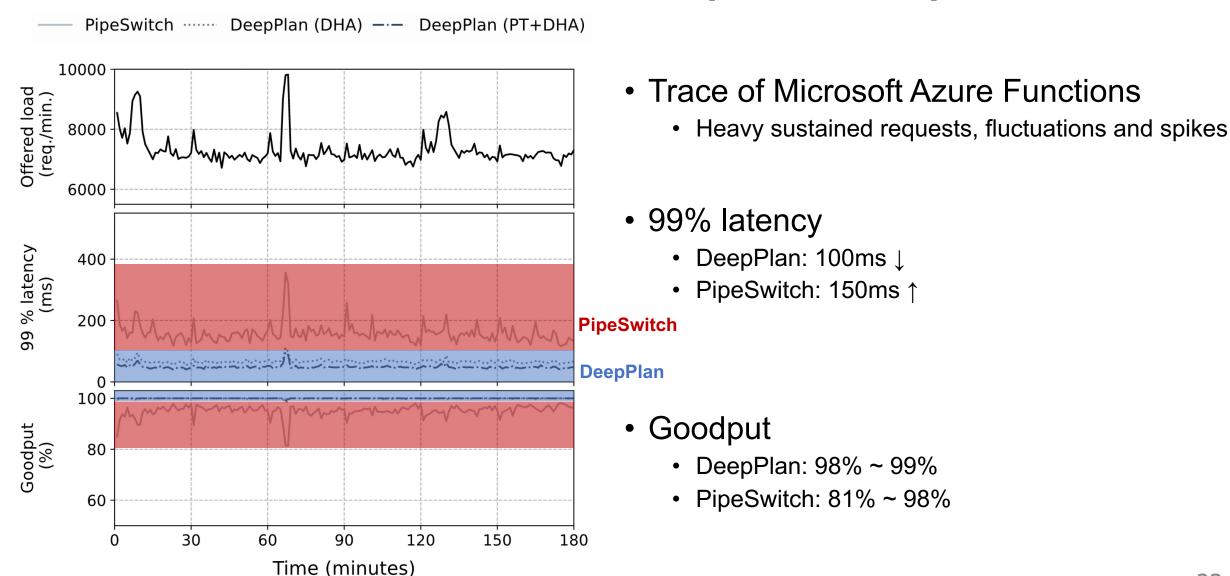
Increasing the Number of Models





- 99% latency, goodput, and cold-start
 - Used Poisson distribution
 - Target SLO: 100ms
- Maximum number of instances without violating SLO
 - PipeSwitch: 120
 - DeepPlan: 180
- Goodput at 180 concurrency
 - Improved by 1.84x compared to PipeSwitch
- GPU memory space required for models
 - DeepPlan keeps 24 more instances

Real-World Workloads (3 hours)



Conclusion

- Cold-start affects the quality of user experiences
- We exploited DHA and PT for minimizing cold-start latency
- We built DeepPlan for automatically generating inference execution plans
- DeepPlan could significantly reduce the stall time and improve the performance of serving inferences

Thank You!

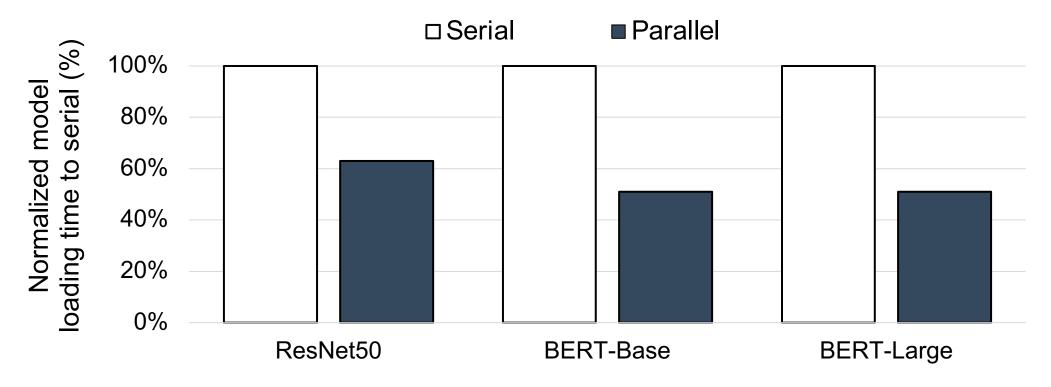
Fast and Efficient Model Serving Using Multi-GPUs with Direct-Host-Access

Jinwoo Jeong, Seungsu Back, Jeongseob Ahn

jjw8967@ajou.ac.kr

Performance Analysis (Parallel-Transmission)

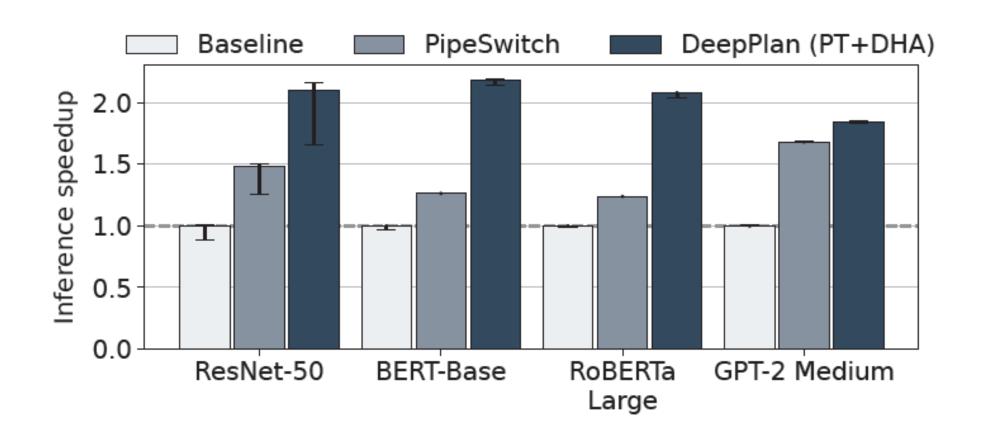
We have measured the loading time of serial and parallel-transmission



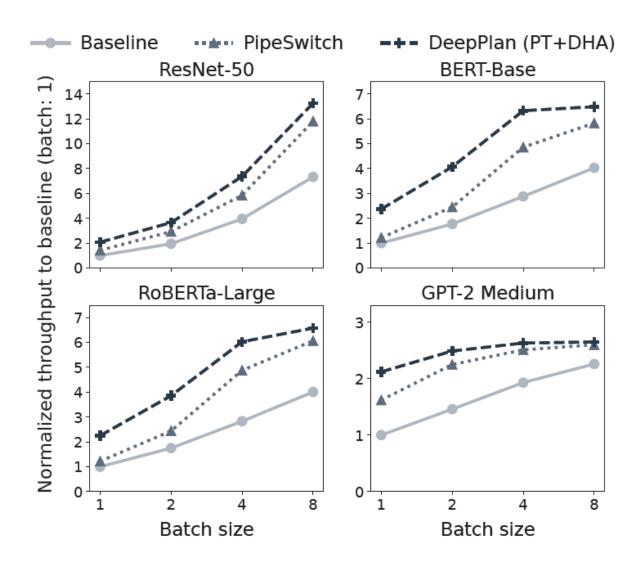
Effectively reduce model transmission time with multi-GPUs

Single Inference with PCIe 4.0

DeepPlan still improved the single inference latency with PCIe 4.0



Throughput improvement with batching 1 to 8



 Normalized the throughput to Baseline with batch size 1

- DeepPlan vs. PipeSwitch
 - Vision model
 - 1.12 ~ 1.26x improvement
 - NLP model
 - As batch size increases, the gap narrows

Interference from parallel-transmission

- Evaluated the performance interference effects on the two GPUs
- Despite the presence of interference, DeepPlan is still faster than PipeSwitch

	PipeSwitch (1)	PT+DHA (1)	PT+DHA (2)
ResNet-50	12.03	8.93	11.97
ResNet-101	19.85	17.71	21.19
BERT-Base	40.51	20.88	30.45
BERT-Large	122.37	70.56	108.16
RoBERTa-Base	45.86	20.83	34.48
RoBERTa-Large	129.58	70.26	107.87
GPT-2	48.41	33.38	35.98
GPT-2 Medium	134.10	101.83	112.71